Modified ACS Centroid Memory for Data Clustering
نویسندگان
چکیده
منابع مشابه
Entropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملPseudo-centroid clustering
Pseudo-Centroid Clustering replaces the traditional concept of a centroid expressed as a center of gravity with the notion of a pseudo-centroid (or a coordinate free centroid) which has the advantage of applying to clustering problems where points do not have numerical coordinates (or categorical coordinates that are translated into numerical form). Such problems, for which classical centroids ...
متن کاملUncertain Centroid based Partitional Clustering of Uncertain Data
Clustering uncertain data has emerged as a challenging task in uncertain data management and mining. Thanks to a computational complexity advantage over other clustering paradigms, partitional clustering has been particularly studied and a number of algorithms have been developed. While existing proposals differ mainly in the notions of cluster centroid and clustering objective function, little...
متن کاملData Compression for ACS
The algorithm for on-board compression on the fly of ACS data is briefly reviewed and its benefits discussed. On the basis of this discussion we recommend a compression strategy and briefly list a plan to establish the optimal compression factor. Once the planned test is completed we will recommend an implementation strategy for compression during SMOV and the following cycles.
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science
سال: 2019
ISSN: 1549-3636
DOI: 10.3844/jcssp.2019.1439.1449